Construction of Human Microbiome/Mycobiome Catalogues and Metagenome Species
Metagenomic studies on the human gut microbiome has enabled the characterization of the microbial and functional diversity in health and diseases. Advances in metagenome assembling and various clustering methods have enabled the generation of co-abundance gene groups (CAGs) and metagenome species, which has allowed for generation of thousands of Metagenome-Assembled Genomes (MAGs) and reconstitution of Metagenome Species Pan-genomes (MSPs). In several different projects in the group we are updating different microbial gene catalogues together with metagenome species, including bacteria, fungi and phage to achieve better representation of uncultured genomes in the human microbiome.
Functional and Compositional Changes of Oral, Skin and Gut Shared and Distinct Microbes in Health and Disease
As microbiota known to affect host physiology, there are increasing demands to understand microbial mechanism and underlying functions. Here we develop advanced bioinformatics tools and databases to enable us to explore functional repertoire of many microorganisms. We characterize the generated metagenome species and gene catalogues with several functional annotations such antimicrobial resistance, virulence factors, mobile genetic elements, and secondary metabolites. We then apply this information as well to understand the distinct and shared microbial fucntions on different body sites for several diseases.
Quantitative Systems Biology and AI in Host-Microbiome Interactions
In different studies, we analyse multi-omics data on host and microbiome and within this theme of projects, we integrate these data in a personalized fashion using integrated network system, where different data on transcriptomics, metabolomics and metagenomics can be integrate together and also can be linked to immunome. The outcomes will also lead to a personalized approach and better stratification of patients based on multi-dimensional data integration. These findings will also provide valuable information to perform personalized predictive modelling to simulate and coupling treatment efficacy based on host-microbiome interactions and therefore suggest an improved microbiome-based personalized medicine pathway for therapy.